
DigiClips: General Public
Access and Admin Control

sdmay25-05

Team Member: Edmund Lim, Nguyen
Do, Varun Yeduru, Eshanth

Chinthireddy, Niharika Pathuri

Faculty Advisor: Dr. Ashfaq Khokhar
Client: DigiClips

The modern media landscape is vast and complex,
with content flowing rapidly across various platforms
(TV, radio, social media, blogs). Users need accessible,
efficient tools to stay informed.

Introduction

Problem

● Platform originally accessible only to paid users

● No access for general public to try or evaluate the platform

● Limited reach and slower user growth

● Difficult onboarding for new or casual users

● Lack of flexibility in user tiers hindered engagement and promotion

Solution

● Introduced public user access alongside existing paid users

● Created a tiered user model: guest, registered free, and subscribed

● Allows public users to experience core features with limitations

● Encourages platform exploration and increases user acquisition

● Seamless upgrade path from free to paid tiers for interested users

Design Overview

System Architecture

The platform consists of:

● Frontend: Angular (v15) – modular, responsive user
interface

● Backend: Node.js with Express, handling API routing,
role-based access, and JWT authentication

● Database: MySQL (Dockerized), storing user
accounts, search history, media metadata

● Notification System: Sends alerts via email (real-time,
daily, or weekly)

● Hosting: Amazon Lightsail for cost-effective scalability

Core System Modules

● Search (Main Repo)
Handles keyword queries and filters media results. Includes guest search
counter and ad placeholder.

● Ad Placeholder (Main Repo)
Static frontend block simulates ad support for free-tier users.

● Email Notifications (Main Repo)
Onboarding emails sent to approved users using nodemailer.

● Admin Tools (Separate Repo)
Admin actions like user approvals and email alert management handled in a
distinct Node.js project.

Protype

User Interface Design

Non-subscribers access a clean, ad-supported
General Public Page with:

● Search input & media-type filters

● 5-search daily cap with visible counter

● In-page ads and subscription call-to-action
(CTA)

● Responsive layout for desktop

Design Tradeoffs & Innovations

We evaluated five access-limitation models:

● Daily Search Cap (Chosen – 5/day)

● Token-based quota

● Cooldown period per search

● Result-depth limits

● Ad-based unlimited access

Constraints

● Hosting was not implemented by our
team; it is part of a future deployment
plan coordinated by the client and
another team

● Ads were limited to static placeholders
due to the lack of a verified production
domain, preventing integration with live
ad providers

● Ad performance tracking and analytics
were not implemented, as they depend
on future hosting and production
deployment

Risk Mitigation

● Fixed guest login issues by creating
dedicated JWT handler

● Rebuilt admin approval flow with
email notifications and database
flags

● Prepared search backend for future
scaling (logging, reset logic)

Demo

Demo Video

https://docs.google.com/file/d/1e5f7EoxYvynmff0MhO1hpPbmVdY-gLU5/preview

Our Implementation

General Public users can
register via “Apply for
Demo” form

Admin must approve public users'
requests before login is allowed

Our Implementation

General users can perform up to
5 media searches per day with
ad display

Admins can approve/reject requests
and reset search limits

Our Implementation

Welcome email is auto-sent when request is approved

Testing Overview

Testing digiclips

 Why Testing is Critical for DigiClips:

DigiClips is a real-time media search engine with rich UI and
multiple components interacting

Testing ensures:

● Stability across complex user actions: Login, search, playback

● Smooth handling of different media formats and dynamic results

● Confidence during feature updates and refactors

Without testing, UI breakages or logic bugs degrade user trust and retention

Testing Strategy Overview

Unit Testing (Jest)

● Tests backend logic (like login, signup, and user validation)
● Fast feedback for server code changes
● Example: Checks if users can log in, sign up, or get rejected for invalid credentials

End-to-End Testing (Cypress)

● Tests real user flows in the browser (like logging in and searching)
● Makes sure the app works as users expect
● Example: Logs in, performs a search, and checks that results and key buttons appear

CI Integration
● All tests run automatically on every pull request or push
● Catches bugs before code is merged
● Keeps the main branch stable

Testing Strategy Overview

Why Jest and Cypress?

Jest (Unit Testing):

● Lightweight, fast, minimal config
● Built-in mocking, coverage reports, snapshot testing
● Well-suited for React + Node ecosystem

Cypress (E2E Testing):

● Runs in a real browser (not headless by default)
● Time travel debugging, screenshots, and video recordings
● No need for manual waits — DOM updates tracked automatically
● Ideal for verifying complete user experience

Cypress Usage

http://www.youtube.com/watch?v=zdzVVdU4rHI

Final Thoughts on Testing

● Testing is foundational to delivering a stable, scalable media search experience.

● By using Jest and Cypress, we cover both:
○ Logic correctness (unit tests)
○ Full user flows (end-to-end tests)

● Integrated with GitHub Actions:

○ All tests are automatically triggered on every pull request
○ No code is merged unless it passes the full test suite
○ This enforces code quality, prevents regressions, and ensures a clean main branch

● Result: Confident releases, faster development, and a better user experience.

 “If it’s not tested, it’s broken — we just don’t know it yet.”

Next step

A team from the Arizona

State University will

continue our work and

integrate live ads into the

system once it is deployed

on AWS.

